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This letter discusses the convergence condition of the narrowband
FxLMS (NFxLMS) algorithm in Z-domain. First, two new concepts
about NFxLMS root locus, that is critical start point (CSP) and criti-
cal cross point (CCP), are introduced and defined. For NFxLMS with
the simplest case, a special characteristic of the root locus is observed
that the CCP always locates itself near the CSP in the Z plane. By ex-
ploiting this characteristic, directly solving the root locus equation is
eliminated from the stability analysis, and the upper bound of the step
size for NFxLMS is eventually estimated as a function of the reference
frequency.

Introduction: The noise produced by the transformer or the rotating ma-
chines such as engines, helicopters, motors, and so forth, can be con-
sidered as periodic and deterministic noises [1]. The narrowband active
noise control (NANC) system equipped with the narrowband filtered-
x LMS (NFxLMS) algorithm is found to be effective in reducing such
noises [2, 3]. The stability analysis of the NFxLMS, which is mainly
aimed at estimating the upper bound for the step size, that is μmax, can
be performed in the time domain [4–6] or in the Z-domain [7–11]. How-
ever, both analyses mentioned above have their respective limitations.

Limitations of the time domain analysis: In the time domain analy-
sis, the input signal sometimes has to be assumed as pseudorandom sig-
nal and sometime as random signal, even the input signal is obviously
deterministic. Moreover, the time domain analysis is based on several
assumptions [4–6], that is the slow adaptation assumption and the in-
dependence assumption, which would not hold when the input signal is
periodic. In [6], Table 1, the estimation of μmax derived from the time
domain analysis is about six times of the actual value. Furthermore, the
estimation in [6] requires a computational expensive grid search.

Limitations of the Z-domain analysis: Because the reference signal
of NFxLMS is usually deterministic and periodic, it is more suitable to
consider the NANC system as a linear time-invariant (LTI) system and
analyze its stability in Z-domain [7–11]. However, the root locus equa-
tion of NFxLMS is usually a higher degree parametric (HDP) equation.
Due to the difficulty in solving an HDP equation, it is hard to extract any
elegant expression for μmax from the analysis in Z-domain, even for the
NFxLMS with the simplest case.

To avoid the difficulty in solving the root locus equation, a novel sta-
bility analysis of NFxLMS in Z-domain is proposed. The main contri-
butions of this letter are listed as follows.

(1) An important characteristic of the NFxLMS root locus is observed
that the critical cross point (CCP) always locates itself near the critical
start point (CSP) in the Z plane. Utilizing this characteristic, directly
solving the root locus equation is eliminated from the stability analy-
sis. (2) Based on the novel stability analysis, the value of μmax for the
NFxLMS with the simplest case is estimated. The influence of the refer-
ence frequency on the estimation of μmax is considered.

NFxLMS Algorithm and its transfer function: The block diagram of
a typical NFxLMS algorithm can be found in [6], Figure 1. The input
and output signals of NFxLMS are respectively denoted as p(n) and e(n)
where n is the time index. The NFxLMS is described by the following
equations:

Table 1. Mean deviation of the estimation μmax

� = 10 � = 20 � = 40 � = 60

MD 22.8% 16.0% 11.0% 9.0%

Fig. 1 The upper Z plane of NFxLMS root locus (� = 10 and ω0 = π /4)

y(n) =
q∑

i=1

[ai(n) cos(ω in) + bi(n) sin(ω in)], (1a)

e(n) = p(n) −
L∑

l=0

sl y(n − l ), (1b)

ai(n + 1) = ai(n) + μe(n)
L∑

l=0

ŝl cos[(n − l )ωi], (1c)

bi(n + 1) = bi(n) + μe(n)
L∑

l=0

ŝl sin[(n − l )ω i], (1d)

where ωi is the ith frequency component of the reference signal, q is
the total number of the frequency components, s = [s1, s2, …, sL] with
length L is the impulse response of the secondary path (SP) and ŝ =
[ŝ1, ŝ2, . . . , ŝL] is the estimation of SP, which is usually assumed to be
available with the on-line or off-line system identification technique [12,
13].

The NFxLMS requires only two coefficients, that is ai(n) and bi(n), to
control one frequency component in the noise. The two coefficients are
adapted with Equations (1c)–(1d) where μ is the step size of the adap-
tation. A large μ can increase the convergence speed. However, when
μ further increases to its upper bound μmax, the algorithm would lose
its robustness [6, 9]. This letter examines the stability analysis aimed at
estimating the value of μmax for the NFxLMS given by Equations (1a)–
(1d).

Respectively denoting E(z), P(z) and S(z) as the Z transforms of
e(n), p(n) and s, the transfer function of NFxLMS is defined as
H(z) = E(z)/D(z). After several straightforward manipulations, the trans-
fer function of NFxLMS can be achieved from Equations (1a)–(1d) as

H (z) = 1
/

(1 + μS(z)
q∑

i=1

αiz − βi

z2 − 2z cos ω i + 1
) (2)

where αi = ∑L
l=0 ŝl cos[(l + 1)ω i] and βi = ∑L

l=0 ŝl cos(lωi).
For the simplest case where the reference signal only has a sin-

gle frequency component ω0, the SP is composed of a pure de-
lay �, that is S(z) = z−� and a perfect SP estimation is as-
sumed, that is S(z) = Ŝ(z) = z−�, (2) can be simplified as H (z) =
(z2 − 2z cos ω0 + 1)/F (z), where F(z) is given by

F (z) = z2 − 2z cos ω0 + 1 + μz−�[(z cos((� + 1)ω0) − cos(�ω0)].

(3)

In the framework of the root locus theory, the root locus equation
of NFxLMS is F(z) = 0. The μmax for NFxLMS can be estimated by
searching for the maximum μ to ensure that all the roots of F(z) = 0
are inside the unit circle in Z plane [9]. From (3), the value of μmax(ω0)
should be a function of the reference frequency ω0. However, due to the
unsolved problem in mathematics of determining all the roots of a HDP
equation, it is impossible to extract any global conclusion for μmax by
directly solving F(z) = 0, even for NFxLMS with the simplest case. Only
the values of μmax(ω0) for some particular cases, that is μmax(ω0 = 0) [9]
and μmax(ω0 = π /2) [10,11], have been discussed.
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Fig. 2 Relationship between ϕ and ω0 (� = 10 and ω0 = π /4)

Characteristic of nfxlms root locus: An example of the NFxLMS root
locus is shown in Figure 1 for ω0 = 0.25π and � = 10 with μ increases
from 0 to μmax = 0.28. The arrows indicate the increasing direction of
μ. Only the upper Z plane is considered in Figure 1 because the Z plane
of the NFxLMS root locus is symmetric about its horizontal axis. CSP
and CCP of the NFxLMS root locus are defined as follows.

CSP: The start points of NFxLMS root locus are defined by the roots
of F(z) = 0 with μ = 0. From (3), one of the start points certainly locates
itself at z0 = e jω0 and this point is defined as CSP.

CCP: As μ increases, some roots of F(z) = 0 may cross the unit
circle. The location where the first root crosses the unit circle is defined
as CCP. The CCP is denoted as zc = eθ j where θ is the argument of zc.

It is obvious that the value of μ corresponding to zc = eθ j is μmax. If
the value of θ can be achieved, then inserting zc = eθ j into (3) and forcing
F(z) = 0, the value of μmax can be estimated as a function of ω0 and �,
as

μ̂max(ω0,�) = (2zc cos ω0 − zc
2 − 1)zc

�

zc cos((� + 1)ω0) − cos(�ω0)
. (4)

In Figure 1, the CSP locates itself in z0 = e0.25π j. The CCP approx-
imately locates itself in zc = e0.2π j, that is θ = 0.2π . The CCP is in
the neighbourhood of the CSP in the Z plane. To further discuss the lo-
cation relationship between CCP and CSP, the argument difference be-
tween CCP zc = eθ j and CSP z0 = e jω0 is introduced, which is defined as
ϕ = θ-ω0. The value of ϕ depends on ω0, and their relationship is plot-
ted in Figure 2. From Figures 1 and 2, an important characteristic of the
NFxLMS root locus is observed that the CCP always locates itself close
to the CSP, that is 0≈|ϕ/π | < < 1. This characteristic will be further
verified by the simulation later.

For a sufficiently small ϕ, the following approximations hold.

cos (ϕ + ϕ�) ≈ cos (ϕ�) and sin (ϕ + ϕ�) ≈ sin (ϕ�) . (5)

Stability analysis of NFxLMS
Because μmax in (4) is a real number instead of a complex number,

taking real part of the numerator and denominator on left hand side of
(4) leads to

μmax = fr(ω0,�, θ )

= 2 cos θ (cos ω0 − cos θ )

cos(ω0(� + 1)) cos(θ (1 − �)) − cos(ω0�) cos(θ�)
, (6)

and taking image part of the numerator and denominator on left hand
side of (4) leads to

μmax = fi(ω0,�, θ )

= 2 sin θ (cos ω0 − cos θ )

cos(ω0(� + 1)) sin(θ (1 − �)) + cos(ω0�) sin(θ�)
. (7)

When cosω0 �=cosθ , the Equation (6) = (7) leads to

cos(ω0�) sin(θ (� + 1)) = cos(ω0(� + 1)) sin(θ�). (8)

Inserting θ = ϕ + ω0 into (8) and considering the approximations
given in (5), (8) can be rewritten as

cos(ω0�)[sin(ω0(� + 1)) cos(ϕ�) + sin(ϕ�) cos(ω0(� + 1)]

= cos(ω0(� + 1))[sin(ω0�) cos(ϕ�) + sin(ϕ�) cos(ω0�)]
. (9)

Fig. 3 The estimated value (circles) shown in (a) and the actual value (as-
terisks) shown in (b) as a function of the reference frequency ω0

Then, (9) further results in

cos(ϕ�) sin(ω0) = 0. (10)

When ω0 �=kπ where k is an arbitrary integer, the solution for (10)
is ϕ� = 2kπ±π /2. As the value of ϕ is sufficiently small, ϕ can be
estimated as

ϕ = −π/ (2�) or ϕ = π/ (2�) . (11)

Equation (11) holds only when ω0 �=kπ . When ω0≈kπ , that is ω0 ≈ π

or ω0≈0, the value of ϕ cannot be estimated by any derivation. Fortu-
nately, from Figure 2, when ω0 < π /(� + 1) or π�/(� + 1) < ω0, a
linear relationship between ϕ and ω0 can be assumed. Moreover, from
Figure 2, when π /(� + 1) < ω0 < π�/(� + 1), ϕ seems to be a peri-
odical function. From the information contained in Figure 2 and Equa-
tion (11), a more precise estimation of ϕ can be achieved as a function
of ω0, as

ϕ(ω0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− ω0 (�+1)
2�,

0 ≤ ω0
≤π

(�+1); ;
π

2�,
kπ

(�+1) < ω0 ≤ (k+0.5)π
(�+1), ;

−π
2�,

(k+0.5)π
(�+1) < ω0 <

(k+1)π
(�+1) ;

− (ω0−π )(�+1)
2�,

π�
(�+1) ≤ ω0 ≤ π; ;

(12)

where k is an integer chosen from 1 to � + 1. The argument θ of
CCP, that is zc = eθ j, can be estimated as

θ = ϕ (ω0) + ω0. (13)

Inserting z = eθ j into (4), the estimation of μmax is achieved as

μ̂max(�,ω0) = Re(
(2zc cos ω0 − zc

2 − 1)zc
�

(zc cos((� + 1)ω0) − cos(�ω0)
) = num

den
(14)

where

den = [cos(�ω0) + cos((� + 1)ω0)]2

−4cos2(θ
/

2) cos(�ω0) cos((� + 1)ω0) (15)

num = cos(�ω0)[cos((� + 2)θ ) + cos(�θ )]

− cos((� + 1)ω0)[cos((� − 1)θ ) + cos((� + 1)θ )]

+2 cos ω0[cos((� + 1)ω0) cos(�θ ) − cos(�ω0) cos((� + 1)θ )]

(16)

To sum up, the estimation of μmax(�, ω0) for NFxLMS with the sim-
plest case consists of the relations in the following order, (12), (13), (15),
(16) and (14).

Simulation results: The estimation of ϕ(ω0) given in (12) is verified first
in Figure 3. The actual value of ϕ is achieved by a search process de-
scribed as follows. The μ in (3) increases from 0 to a larger value with
interval 0.001, and for each value of μ, the equation F(z) = 0 is solved
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Fig. 4 The actual value of μmax (asterisks) and the estimated value of μmax

(circles) as a function of ω0. (a) � = 10; (b) � = 20; (c) � = 40; (d) � = 60

numerically by using the function roots in MATLAB. When the first root
zc crosses the unit circle, the search process stops and the actual value
of ϕ(ω0) is achieved. The estimated value of ϕ(ω0) is compared with its
actual value in different frequencies set as ω0 = iπ /100 [9] where i is
an integer ranging from 0 to 100. The comparison results are shown in
Figure 3 with � = 20.

There are three pieces of relevant information contained in Figure 3.
(1) From Figure 3, the Equation (12) performs well in predicting the
value of ϕ(ω0) for all the reference frequencies. (2) From Equation (11),
the maximum magnitude of ϕ(ω0) is inversely proportional to the value
of �. In Figure 2, the maximum magnitude of ϕ(ω0) with � = 10 is
about 0.05π and in Figure 3, the maximum magnitude of ϕ(ω0) with
� = 20 is about 0.025π . The information contained in Figures 2 and 3
verifies the inverse relationship between the magnitude of ϕ(ω0) and the
value of �. (3) From Equation (11), the magnitude of ϕ(ω0) becomes
smaller as the value of � increases. At least for � > 10, the magni-
tude value of ϕ(ω0) is so small that the approximation given in (5) is
reasonable.

The estimation of μmax given by Equation (14) is verified in Fig-
ure 4. The actual value of μmax is achieved by testing the convergence
of NFxLMS given by Equations (1a)–(1d). The μ in (1a)–(1d) increases
from 0 to a larger value with interval 0.001. When the NFxLMS be-
comes unstable, the μ is considered as the actual value of μmax. The
comparison results are shown in Figure 4 with different values of �.

From Figure 4, only some slight deviations occur in the high and low
frequency bands. In the medium frequency band, Equation (14) performs
quite well in predicting the value of μmax.

The overall precision of the estimation is evaluated by the mean de-
viation (MD), which is defined as

MD =
√√√√ 100∑

i=0

E2(
i

100
π )/101

where E(ω0) = μ̂max(ω0) − μmax(ω0)

μmax(ω0)
× 100%. (17)

The value of MD with different values of � is shown in Table 1.
From Table 1, the precision of the estimation improves significantly as
� increases. When � > 20, the estimation begins to achieve a high
overall precision.

Conclusion: To obtain a more reliable estimation of μmax and to evalu-
ate the influence of ω0 on the estimation μmax, the stability of NFxLMS
with the simplest case is analyzed in Z-domain. First, an important char-
acteristic of the NFxLMS root locus is observed that the CSP always
locates itself close to the CCP in the Z plane. Then, exploiting this char-
acteristic, directly solving the HDP equation F(z) = 0 is eliminated from
the convergence analysis. Finally, based on the new convergence analy-
sis, the estimation of μmax(ω0) for NFxLMS is achieved as a function of
ω0.

However, our analysis is limited to the NFxLMS with single fre-
quency component. The possibility of extending this analysis to the
NFxLMS with multiple frequency components requires further discus-
sion.

Conflict of interest: The authors declare no conflict of interest .

Funding information: This work was supported by National Natural
Science Foundation of China with Grant/Award number 5200245

Data availability statement: The data that support the findings of this
study are available from the corresponding author upon reasonable re-
quest.

Credit statement: Hao-xiang Wen: conceptualization; data curation;
formal analysis; funding acquisition; investigation; software; writing –
original draft and writing – review and editing. Huan Luo: software;
validation; visualization; writing – original draft and writing – review
and editing. Sen-quan Yang: validation; visualization; writing – review
and editing.

© 2021 The Authors. Electronics Letters published by John Wiley &
Sons Ltd on behalf of The Institution of Engineering and Technology

This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited,
the use is non-commercial and no modifications or adaptations are made.
Received: 20 October 2021 Accepted: 10 November 2021
doi: 10.1049/ell2.12378

References

1 Ma, Y., Xiao, Y.: A new strategy for online secondary-path modeling
of narrowband active noise control. IEEE Trans. Audio, Speech, Lang.
Process. 25(2), 420-434 (2017)

2 Bai, T., Wang, Z. & Xiao, Y. et al.: A multi-channel narrowband active
noise control system with simultaneous online secondary- and feedback-
path modeling. The IEEE Asia Pacific Conference of Circuits and Sys-
tems (APCCAS) 2019 was held in Bangkok, Thailand, November 11–
14, (2019)

3 Lopes, P.A.C., Gerald, J.A.B.: A narrowband active noise control system
with reference synthesis. Int. J. Adapt. Control Signal Process. 33(6),
143-152 (2019)

4 Ma, Y., Xiao, Y., Ma, L., Khorasani, K.: Statistical analysis of narrow-
band active noise control using a simplified variable step-size FxLMS
algorithm. Signal Process 183(6), 1-14 (2021)

5 Zhu, W., Luo, L., Xie, A., Sun, J.: A novel FELMS-based narrowband
active noise control system and its convergence analysis. Applied Acous-
tic 156(1), 229-245 (2019)

6 Xiao, Y., Ikuta, A., Ma, L., Hasegawa, K.: Stochastic analysis of the
FxLMS-based narrowband active noise control system. IEEE Trans. Au-
dio, Speech, Lang. Process. 16(5), 1000-1014 (2008)

7 Wang, L.V., Gan, W., Khong, A.W.H., Kuo, S.M.: Convergence analy-
sis of narrowband feedback active noise control system with imperfect
secondary path estimation. IEEE Trans. Audio, Speech, Lang. Process.
21(11), 2403-2411 (2013)

8 Ardekani, I.T., Abdulla, W.H.: On the stability of adaptation process in
active noise control systems. The J. Acoust. Soc. Am. 129(1), 173-184
(2011)

9 Vicente, L., Masgrau, E.: Novel FxLMS convergence condition with de-
terministic reference. IEEE Trans. Signal Process. 54(10), 3768-3774
(2006)

10 Elliott, S.J., Stothers, I.M., Nelson, P.A.: A multiple error LMS algo-
rithm and its application to active control of sound and vibration. IEEE
Trans. Acoust., Speech, Signal Process. 35(10) 1423-1434 (1987)

11 Morgan, D.R., Sanford, C.: A control theory approach to the stability
and transient analysis of the filtered-x LMS adaptive notch filter. IEEE
Trans. Signal Process. 40(9), 2341-2346 (1992)

12 Chang, C., Kuo, S., Huang, C.: Secondary path modeling for narrow-
band active noise control systems. Applied Acoustic 131(1), 154–164
(2017)

13 Akhtar, M.T.: Narrowband feedback active noise control systems with
secondary path modeling using gain-controlled additive random noise.
Digital Signal Process. 111(1), 1-13 (2021)

132 ELECTRONICS LETTERS February 2022 Vol. 58 No. 3 wileyonlinelibrary.com/iet-el

 1350911x, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ell2.12378 by C

ochraneC
hina, W

iley O
nline L

ibrary on [21/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/iet-el

